Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(*N*-benzoyl-*N*-phenylhydroxylaminato- $\kappa^2 O, O'$)dimethyltin(IV)

Jin Jiang, Lei Dong and Handong Yin*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 17 June 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.042; wR factor = 0.118; data-to-parameter ratio = 14.6.

The Sn atom in the title compound, $[Sn(CH_3)_2(C_{13}H_{10}NO_2)_2]$, has a highly distorted octahedral coordination with the equatorial plane made up of four O atoms from two *N*benzoyl-*N*-phenylhydroxylaminate ligands and the axial positions occupied by two methyl groups. The crystal structure is stabilized by van der Waals interactions.

Related literature

For related structures, see: Harrison et al. (1976)

Experimental

Crystal data

 $[Sn(CH_3)_2(C_{13}H_{10}NO_2)_2]$ $M_r = 573.20$ Monoclinic, $P2_1/n$ a = 13.5475 (14) Å b = 10.3621 (11) Å c = 19.0161 (19) Å $\beta = 102.128$ (1)° $V = 2609.9 \text{ (5) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.01 \text{ mm}^{-1}$ T = 298 K $0.45 \times 0.41 \times 0.28 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.658, T_{max} = 0.764$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.118$ S = 1.124617 reflections 4617 independent reflections 2999 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$

13127 measured reflections

316 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=1.34~\text{e}~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.65~\text{e}~\text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge the National Natural Science Foundation of China (20771053), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2356).

References

Harrison, P. G., King, T. J. & Phillips, R. C. (1976). J. Chem. Soc. Dalton Trans. pp. 2317–2321.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2011). E67, m1029 [doi:10.1107/S160053681102561X]

Bis(*N*-benzoyl-*N*-phenylhydroxylaminato- $\kappa^2 O, O'$)dimethyltin(IV)

J. Jiang, L. Dong and H. Yin

Comment

Among many multidentate organic ligands, hydroxamic acids are of particular importance, because of their remarkable structural diversity and biological applications. The molecular structure of the title compound is depicted in Fig.1. The Sn atom has a highly distorted octahedral coordination, with the equatorial plane made up of four O atoms of *N*-phenyl-*N*-ben-zoylhydroxylamino ligand and the axial positions occupied by a two methyl groups . The crystal structure is built up by van der Waals interactions.

Experimental

The reaction was carried out under nitrogen atmosphere. *N*-phenylbenzohydroxamic acid (0.4 mmol) and KOH (0.4 mmol) were added to a stirred solution of methanol (30 ml) in a Schlenk flask for 0.5 h, then dimethyltin dichloride (0.2 mmol) was added to the reactor. The reaction mixture was stirred for 8 h at room temperature and then filtrated. The filtrate was evaporated *in vacuo* to dryness. The obtained solid was recrystallized from ethylether-petroleum ether (v/v, 1:1) (Yield 78%). Anal. Calcd (%) for C₂₈H₂₆N₂O₄Sn (Mr = 573.20): C, 58.67; H, 4.57; N, 4.89; O, 11.16. Found (%): C, 58.60; H, 4.51; N, 4.97; O, 11.08.

Refinement

The C–H H atoms were positioned with idealized geometry and were refined isotropically with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Bis(*N*-benzoyl-*N*-phenylhydroxylaminato- $\kappa^2 O_i O'$)dimethyltin(IV)

Crystal data $[Sn(CH_3)_2(C_{13}H_{10}NO_2)_2]$ $M_r = 573.20$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn

F(000) = 1160 $D_x = 1.459 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3950 reflections a = 13.5475 (14) Å b = 10.3621 (11) Å c = 19.0161 (19) Å $\beta = 102.128 (1)^{\circ}$ $V = 2609.9 (5) \text{ Å}^{3}$ Z = 4

Data collection

4617 independent reflections
2999 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.054$
$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
$h = -9 \rightarrow 16$
$k = -12 \rightarrow 12$
$l = -22 \rightarrow 19$

 $\theta = 2.2 - 23.5^{\circ}$ $\mu = 1.01 \text{ mm}^{-1}$

Block, colourless

 $0.45 \times 0.41 \times 0.28 \text{ mm}$

T = 298 K

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0414P)^2 + 2.3713P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{max} = 1.34 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.65 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.53023 (3)	0.21609 (4)	0.87352 (2)	0.04530 (15)
N1	0.3263 (3)	0.1438 (4)	0.7933 (2)	0.0438 (11)
N2	0.7002 (3)	0.2851 (5)	0.8049 (2)	0.0484 (11)
01	0.4223 (2)	0.1710 (4)	0.78095 (18)	0.0548 (11)
O2	0.3965 (3)	0.1015 (4)	0.90754 (18)	0.0540 (10)
O3	0.5963 (3)	0.2700 (4)	0.7884 (2)	0.0585 (11)
O4	0.6905 (3)	0.3335 (4)	0.9179 (2)	0.0574 (10)
C1	0.2476 (4)	0.1830 (5)	0.7352 (3)	0.0427 (14)
C2	0.1697 (4)	0.2588 (6)	0.7472 (3)	0.0542 (16)
H2	0.1660	0.2826	0.7937	0.065*
C3	0.0970 (5)	0.2991 (6)	0.6893 (4)	0.0653 (18)
H3	0.0437	0.3498	0.6972	0.078*

C4	0.1015 (5)	0.2663 (7)	0.6210 (4)	0.0684 (19)
H4	0.0514	0.2935	0.5827	0.082*
C5	0.1807 (5)	0.1923 (6)	0.6088 (3)	0.0659 (19)
Н5	0.1854	0.1714	0.5621	0.079*
C6	0.2531 (4)	0.1493 (6)	0.6665 (3)	0.0523 (15)
H6	0.3057	0.0973	0.6586	0.063*
C7	0.3195 (4)	0.1019 (5)	0.8581 (3)	0.0416 (13)
C8	0.2221 (4)	0.0502 (5)	0.8709 (3)	0.0418 (13)
С9	0.1598 (4)	-0.0267 (5)	0.8222 (3)	0.0477 (14)
H9	0.1740	-0.0413	0.7771	0.057*
C10	0.0757 (4)	-0.0825 (6)	0.8401 (3)	0.0545 (15)
H10	0.0333	-0.1350	0.8073	0.065*
C11	0.0555 (5)	-0.0599 (7)	0.9062 (4)	0.0704 (19)
H11	-0.0014	-0.0969	0.9181	0.084*
C12	0.1170 (5)	0.0159 (8)	0.9551 (4)	0.087 (2)
H12	0.1019	0.0313	0.9999	0.104*
C13	0.2012 (4)	0.0693 (6)	0.9380 (3)	0.0624 (17)
H13	0.2447	0.1187	0.9719	0.075*
C14	0.7473 (4)	0.2419 (5)	0.7494 (3)	0.0451 (14)
C15	0.8264 (4)	0.1561 (6)	0.7627 (3)	0.0592 (16)
H15	0.8509	0.1261	0.8092	0.071*
C16	0.8692 (5)	0.1146 (7)	0.7071 (4)	0.073 (2)
H16	0.9232	0.0573	0.7165	0.088*
C17	0.8334 (5)	0.1565 (8)	0.6389 (4)	0.078 (2)
H17	0.8633	0.1290	0.6017	0.093*
C18	0.7536 (5)	0.2390 (7)	0.6253 (4)	0.074 (2)
H18	0.7278	0.2654	0.5783	0.088*
C19	0.7100 (4)	0.2843 (6)	0.6800 (3)	0.0586 (16)
H19	0.6564	0.3423	0.6703	0.070*
C20	0.7432 (4)	0.3252 (5)	0.8716 (3)	0.0479 (14)
C21	0.8507 (4)	0.3625 (6)	0.8857 (3)	0.0497 (14)
C22	0.9129 (5)	0.3195 (7)	0.9482 (4)	0.074 (2)
H22	0.8871	0.2679	0.9802	0.089*
C23	1.0133 (5)	0.3535 (8)	0.9630 (4)	0.091 (3)
H23	1.0555	0.3248	1.0051	0.110*
C24	1.0515 (5)	0.4296 (9)	0.9159 (5)	0.098 (3)
H24	1.1196	0.4512	0.9261	0.117*
C25	0.9905 (5)	0.4736 (7)	0.8546 (4)	0.077 (2)
H25	1.0167	0.5256	0.8230	0.092*
C26	0.8897 (4)	0.4407 (6)	0.8395 (3)	0.0605 (17)
H26	0.8476	0.4714	0.7978	0.073*
C27	0.4692 (5)	0.3809 (6)	0.9127 (4)	0.074 (2)
H27A	0.4747	0.4532	0.8822	0.111*
H27B	0.5057	0.3990	0.9607	0.111*
H27C	0.3995	0.3659	0.9132	0.111*
C28	0.6163 (4)	0.0528 (6)	0.9129 (4)	0.0716 (19)
H28A	0.5905	-0.0212	0.8845	0.107*
H28B	0.6123	0.0381	0.9620	0.107*
H28C	0.6854	0.0667	0.9100	0.107*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0388 (2)	0.0544 (3)	0.0415 (2)	-0.00119 (19)	0.00566 (15)	0.0018 (2)
N1	0.035 (2)	0.060 (3)	0.036 (3)	-0.002 (2)	0.0069 (19)	0.004 (2)
N2	0.032 (2)	0.064 (3)	0.049 (3)	-0.002(2)	0.009 (2)	0.004 (3)
01	0.033 (2)	0.094 (3)	0.037 (2)	-0.009(2)	0.0075 (16)	0.003 (2)
O2	0.046 (2)	0.076 (3)	0.036 (2)	-0.0099 (19)	-0.0016 (17)	0.0090 (19)
O3	0.033 (2)	0.097 (3)	0.044 (2)	-0.006 (2)	0.0044 (16)	0.011 (2)
O4	0.052 (2)	0.072 (3)	0.050 (3)	-0.009 (2)	0.0146 (19)	0.002 (2)
C1	0.033 (3)	0.055 (4)	0.039 (3)	-0.005 (2)	0.005 (2)	0.005 (3)
C2	0.050 (4)	0.062 (4)	0.052 (4)	0.005 (3)	0.014 (3)	0.004 (3)
C3	0.057 (4)	0.063 (5)	0.075 (5)	0.011 (3)	0.011 (3)	0.016 (4)
C4	0.051 (4)	0.079 (5)	0.066 (5)	-0.005 (4)	-0.009 (3)	0.020 (4)
C5	0.064 (4)	0.089 (5)	0.039 (4)	-0.014 (4)	-0.002 (3)	0.005 (3)
C6	0.044 (3)	0.068 (4)	0.043 (4)	0.005 (3)	0.006 (3)	-0.005 (3)
C7	0.035 (3)	0.050 (3)	0.040 (3)	-0.004 (2)	0.007 (2)	0.002 (3)
C8	0.043 (3)	0.050 (3)	0.032 (3)	0.004 (3)	0.009 (2)	0.002 (3)
С9	0.049 (3)	0.053 (4)	0.043 (3)	-0.005 (3)	0.014 (3)	-0.007 (3)
C10	0.048 (4)	0.062 (4)	0.052 (4)	-0.008 (3)	0.008 (3)	-0.003 (3)
C11	0.051 (4)	0.100 (6)	0.062 (4)	-0.018 (4)	0.019 (3)	-0.001 (4)
C12	0.075 (5)	0.135 (7)	0.061 (5)	-0.030 (5)	0.037 (4)	-0.026 (5)
C13	0.055 (4)	0.087 (5)	0.046 (4)	-0.012 (3)	0.012 (3)	-0.013 (3)
C14	0.031 (3)	0.053 (4)	0.050 (3)	-0.006 (2)	0.006 (2)	0.000 (3)
C15	0.058 (4)	0.057 (4)	0.059 (4)	0.005 (3)	0.005 (3)	0.003 (3)
C16	0.058 (4)	0.076 (5)	0.089 (6)	0.012 (4)	0.021 (4)	-0.009 (4)
C17	0.069 (5)	0.095 (6)	0.078 (6)	-0.015 (4)	0.034 (4)	-0.018 (5)
C18	0.075 (5)	0.096 (6)	0.051 (4)	-0.009 (4)	0.017 (4)	0.002 (4)
C19	0.048 (3)	0.074 (4)	0.055 (4)	0.008 (3)	0.013 (3)	0.012 (3)
C20	0.039 (3)	0.050 (4)	0.054 (4)	-0.002 (3)	0.010 (3)	0.007 (3)
C21	0.044 (3)	0.050 (4)	0.053 (4)	-0.002 (3)	0.006 (3)	-0.003 (3)
C22	0.056 (4)	0.087 (5)	0.071 (5)	-0.008 (4)	-0.002 (3)	0.011 (4)
C23	0.050 (4)	0.113 (6)	0.095 (6)	-0.009 (4)	-0.021 (4)	0.015 (5)
C24	0.042 (4)	0.126 (7)	0.118 (7)	-0.024 (4)	0.000 (4)	-0.003 (6)
C25	0.060 (4)	0.089 (5)	0.082 (5)	-0.021 (4)	0.013 (4)	0.003 (4)
C26	0.051 (4)	0.063 (4)	0.067 (4)	-0.008 (3)	0.011 (3)	-0.001 (3)
C27	0.067 (4)	0.065 (5)	0.097 (5)	-0.002 (3)	0.031 (4)	-0.009 (4)
C28	0.050 (4)	0.061 (4)	0.098 (5)	0.004 (3)	0.004 (3)	0.015 (4)
Geometric pa	rameters (Å, °)					
Sn1—O3		2.083 (4)	C11-	—H11	0.93	00
Sn1—O1		2.091 (3)	C12-	C13	1.36	67 (8)
Sn1—C28		2.101 (6)	C12-	—H12	0.93	00
Sn1—C27		2.101 (6)	C13-	—Н13	0.93	00
Sn1—O2		2.367 (4)	C14-	C15	1.37	4 (8)

C14-C19

C15-C16

1.383 (8)

1.377 (9)

2.477 (4)

1.328 (6)

Sn1-O4

N1---C7

N1—01	1.398 (5)	С15—Н15	0.9300
N1—C1	1.425 (6)	C16—C17	1.358 (9)
N2—C20	1.345 (7)	C16—H16	0.9300
N2—O3	1.385 (5)	C17—C18	1.360 (9)
N2—C14	1.415 (7)	C17—H17	0.9300
O2—C7	1.249 (5)	C18—C19	1.382 (9)
O4—C20	1.247 (6)	C18—H18	0.9300
C1—C6	1.370 (7)	С19—Н19	0.9300
C1—C2	1.373 (7)	C20—C21	1.476 (7)
C2—C3	1.379 (8)	C21—C22	1.379 (8)
С2—Н2	0.9300	C21—C26	1.379 (8)
C3—C4	1.355 (9)	C22—C23	1.376 (9)
С3—Н3	0.9300	C22—H22	0.9300
C4—C5	1.377 (9)	C23—C24	1.374 (10)
C4—H4	0.9300	С23—Н23	0.9300
C5—C6	1.382 (7)	C24—C25	1.358 (10)
С5—Н5	0.9300	C24—H24	0.9300
С6—Н6	0.9300	C25—C26	1.379 (8)
С7—С8	1.491 (7)	C25—H25	0.9300
C8—C9	1.369 (7)	C26—H26	0.9300
C8—C13	1.378 (7)	C27—H27A	0.9600
C9—C10	1.382 (7)	С27—Н27В	0.9600
С9—Н9	0.9300	С27—Н27С	0.9600
C10—C11	1.361 (8)	C28—H28A	0.9600
C10—H10	0.9300	C28—H28B	0.9600
C11—C12	1.362 (8)	C28—H28C	0.9600
O3—Sn1—O1	75.22 (13)	C11—C12—C13	119.5 (6)
O3—Sn1—C28	101.3 (2)	C11—C12—H12	120.2
O1—Sn1—C28	110.9 (2)	С13—С12—Н12	120.2
O3—Sn1—C27	108.8 (2)	C12—C13—C8	120.4 (6)
O1—Sn1—C27	102.9 (2)	C12—C13—H13	119.8
C28—Sn1—C27	139.3 (3)	C8—C13—H13	119.8
O3—Sn1—O2	145.61 (13)	C15—C14—C19	119.7 (6)
O1—Sn1—O2	71.21 (13)	C15-C14-N2	121.6 (5)
C28—Sn1—O2	84.1 (2)	C19—C14—N2	118.7 (5)
C27—Sn1—O2	86.0 (2)	C14—C15—C16	120.0 (6)
O3—Sn1—O4	69.15 (13)	C14—C15—H15	120.0
O1—Sn1—O4	143.55 (13)	С16—С15—Н15	120.0
C28—Sn1—O4	83.89 (19)	C17—C16—C15	120.7 (6)
C27—Sn1—O4	82.0 (2)	С17—С16—Н16	119.7
O2—Sn1—O4	145.05 (12)	C15—C16—H16	119.7
C7—N1—O1	118.1 (4)	C16—C17—C18	119.5 (7)
C7—N1—C1	128.8 (4)	С16—С17—Н17	120.3
O1—N1—C1	112.5 (4)	С18—С17—Н17	120.3
C20—N2—O3	117.8 (4)	C17—C18—C19	121.3 (7)
C20—N2—C14	128.8 (4)	C17—C18—H18	119.3
	120.0 (4)	017 010 1110	
O3—N2—C14	113.0 (4)	C19—C18—H18	119.3
O3—N2—C14 N1—O1—Sn1	113.0 (4) 114.4 (3)	C19—C18—H18 C18—C19—C14	119.3 118.8 (6)

supplementary materials

N2—O3—Sn1	115.9 (3)	C14—C19—H19	120.6
C20—O4—Sn1	108.4 (3)	O4—C20—N2	119.2 (5)
C6—C1—C2	120.2 (5)	O4—C20—C21	122.9 (5)
C6—C1—N1	119.1 (5)	N2-C20-C21	117.8 (5)
C2—C1—N1	120.7 (5)	C22—C21—C26	119.5 (6)
C1—C2—C3	119.0 (6)	C22—C21—C20	118.2 (6)
C1—C2—H2	120.5	C26—C21—C20	122.3 (5)
С3—С2—Н2	120.5	C23—C22—C21	119.5 (7)
C4—C3—C2	121.4 (6)	С23—С22—Н22	120.3
С4—С3—Н3	119.3	C21—C22—H22	120.3
С2—С3—Н3	119.3	C24—C23—C22	120.4 (7)
C3—C4—C5	119.6 (6)	С24—С23—Н23	119.8
C3—C4—H4	120.2	С22—С23—Н23	119.8
C5—C4—H4	120.2	C25—C24—C23	120.5 (7)
C4—C5—C6	119.6 (6)	C25—C24—H24	119.7
C4—C5—H5	120.2	C23—C24—H24	119.7
С6—С5—Н5	120.2	C24—C25—C26	119.5 (7)
C1—C6—C5	120.1 (6)	C24—C25—H25	120.2
С1—С6—Н6	119.9	С26—С25—Н25	120.2
С5—С6—Н6	119.9	C25—C26—C21	120.6 (6)
O2—C7—N1	119.2 (5)	C25—C26—H26	119.7
O2—C7—C8	120.3 (5)	С21—С26—Н26	119.7
N1—C7—C8	120.4 (4)	Sn1—C27—H27A	109.5
C9—C8—C13	119.5 (5)	Sn1—C27—H27B	109.5
C9—C8—C7	122.7 (5)	H27A—C27—H27B	109.5
C13—C8—C7	117.4 (5)	Sn1—C27—H27C	109.5
C8—C9—C10	120.0 (5)	H27A—C27—H27C	109.5
С8—С9—Н9	120.0	H27B—C27—H27C	109.5
С10—С9—Н9	120.0	Sn1—C28—H28A	109.5
C11—C10—C9	119.4 (5)	Sn1—C28—H28B	109.5
C11—C10—H10	120.3	H28A—C28—H28B	109.5
С9—С10—Н10	120.3	Sn1—C28—H28C	109.5
C10—C11—C12	121.1 (6)	H28A—C28—H28C	109.5
C10-C11-H11	119.4	H28B—C28—H28C	109.5
C12—C11—H11	119.4		
C7—N1—O1—Sn1	-24.6 (6)	02—C7—C8—C9	-137.2 (6)
C1—N1—O1—Sn1	147.3 (3)	N1—C7—C8—C9	40.0 (8)
O3—Sn1—O1—N1	-166.9 (4)	O2—C7—C8—C13	35.0 (8)
C28—Sn1—O1—N1	96.5 (4)	N1—C7—C8—C13	-147.7 (6)
C27—Sn1—O1—N1	-60.5 (4)	C13—C8—C9—C10	1.2 (8)
O2—Sn1—O1—N1	20.7 (3)	C7—C8—C9—C10	173.3 (5)
O4—Sn1—O1—N1	-154.5 (3)	C8—C9—C10—C11	0.2 (9)
O3—Sn1—O2—C7	-30.5 (5)	C9—C10—C11—C12	-0.5 (10)
O1—Sn1—O2—C7	-17.5 (4)	C10-C11-C12-C13	-0.7 (12)
C28—Sn1—O2—C7	-131.9 (4)	C11—C12—C13—C8	2.2 (11)
C27—Sn1—O2—C7	87.6 (4)	C9—C8—C13—C12	-2.4 (10)
O4—Sn1—O2—C7	157.6 (3)	C7—C8—C13—C12	-174.9 (6)
C20—N2—O3—Sn1	-31.1 (6)	C20—N2—C14—C15	45.2 (9)
C14—N2—O3—Sn1	142.6 (4)	O3—N2—C14—C15	-127.7 (5)

O1—Sn1—O3—N2	-161.5 (4)	C20-N2-C14-C19	-137.1 (6)
C28—Sn1—O3—N2	-52.6 (4)	O3—N2—C14—C19	50.1 (7)
C27—Sn1—O3—N2	99.7 (4)	C19—C14—C15—C16	1.2 (9)
O2—Sn1—O3—N2	-148.7 (3)	N2-C14-C15-C16	178.9 (5)
O4—Sn1—O3—N2	26.3 (3)	C14—C15—C16—C17	-0.7 (10)
O3—Sn1—O4—C20	-22.4 (4)	C15-C16-C17-C18	-0.9 (11)
O1—Sn1—O4—C20	-35.1 (5)	C16—C17—C18—C19	2.1 (11)
C28—Sn1—O4—C20	82.2 (4)	C17-C18-C19-C14	-1.6 (10)
C27—Sn1—O4—C20	-136.1 (4)	C15-C14-C19-C18	-0.1 (9)
O2—Sn1—O4—C20	152.8 (3)	N2-C14-C19-C18	-177.8 (5)
C7—N1—C1—C6	-140.5 (6)	Sn1—O4—C20—N2	14.5 (6)
O1—N1—C1—C6	48.6 (7)	Sn1—O4—C20—C21	-168.1 (4)
C7—N1—C1—C2	42.6 (8)	O3—N2—C20—O4	7.7 (8)
O1—N1—C1—C2	-128.3 (5)	C14—N2—C20—O4	-164.9 (5)
C6—C1—C2—C3	0.6 (9)	O3—N2—C20—C21	-169.9 (5)
N1—C1—C2—C3	177.5 (5)	C14—N2—C20—C21	17.6 (9)
C1—C2—C3—C4	-0.6 (9)	O4—C20—C21—C22	46.8 (8)
C2—C3—C4—C5	-0.7 (10)	N2-C20-C21-C22	-135.7 (6)
C3—C4—C5—C6	1.8 (10)	O4—C20—C21—C26	-131.6 (6)
C2-C1-C6-C5	0.6 (9)	N2-C20-C21-C26	45.9 (8)
N1—C1—C6—C5	-176.4 (5)	C26—C21—C22—C23	-1.1 (10)
C4—C5—C6—C1	-1.8 (9)	C20-C21-C22-C23	-179.5 (6)
Sn1—O2—C7—N1	10.7 (6)	C21—C22—C23—C24	0.0 (12)
Sn1—O2—C7—C8	-172.1 (4)	C22—C23—C24—C25	0.8 (14)
O1—N1—C7—O2	7.7 (8)	C23—C24—C25—C26	-0.4 (13)
C1—N1—C7—O2	-162.8 (5)	C24—C25—C26—C21	-0.7 (11)
O1—N1—C7—C8	-169.5 (4)	C22—C21—C26—C25	1.4 (10)
C1—N1—C7—C8	20.0 (8)	C20—C21—C26—C25	179.9 (6)

